Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Soleil Terre Lune Phénomènes

Les effets lumineux de l'atmosphère terrestre

L'atténuation atmosphérique

Comme nous venons de le voir, en raison de la réfraction et des distances Terre-Lune, la Lune éclipsée reçoit toujours des rayons lumineux réfractés par l'atmosphère terrestre.

La réfraction est également la cause d'un phénomène d'atténuation, dans la figure ci-dessous, considérons un rayon lumineux élémentaire, d'angle d τ, issue du point S du disque solaire considéré plan (1). Ce rayon, suite à la réfraction atmosphérique, va illuminer la surface dS' située dans le plan de la Lune (2). En absence de réfraction il illuminerait la surface dS. Dans les deux cas le flux de lumière qui illumine ces deux surfaces est le même, les surfaces n'étant pas égales, la surface dS', supérieure à dS est moins éclairée.

luneattenuation.jpg
Crédit : IMCCE/Patrick Rocher

L'atténuation est donnée par le rapport des surfaces dS/dS' = Φ-1

Le terme Φ peut s'écrire sous la forme suivante : Phi=(i/Psi)*(1-r*(d*omega/d*h_0)*(1/(pi_s+pi_L)))

Cette formule comporte deux facteurs qui agissent en sens inverse, le premier diminue la surface éclairée (ds) et le deuxième élargit la surface éclairée (dS'), la combinaison des deux crée l'atténuation par réfraction. Pour imager notre propos considérons la figure suivante dans laquelle un rayon cylindrique de largeur dS est réfracté suivant une surface (ds) plus petite si on considère que la réfraction ne varie pas avec l'altitude (premier terme de la formule) et qui est réfracté suivant dS' si on considère que la réfraction décroît avec l'altitude (deuxième terme de la formule). Le premier terme fait donc bien croître l'illumination et le second la fait décroître.

luneattenuationbis.jpg
Crédit : IMCCE/Patrick Rocher

Si l'on exprime les variations de Φ en fonction de l'altitude h dans l'atmosphère, on s'aperçoit que c'est dans la haute atmosphère (troposphère) que l'atténuation est la plus appréciable malgré la faible valeur de la réfraction. Elle décroît ensuite jusqu'à la valeur un, pour une altitude h d'environ 2km, puis le phénomène s'amplifie et pour la valeur i=0 il y a focalisation. De plus on peut dire que l'atténuation par la réfraction est pratiquement neutre et que l'ombre est approximativement grise.

L'absorption atmosphérique

L'absorption atmosphérique est produite par la diffusion de la lumière par les molécules et les aérosols de l'air. L'absorption atmosphérique est très sensible à la longueur d'onde (c'est une loi en 1/λ 4). La lumière bleue est donc plus absorbée que la lumière rouge, cette absorption croît avec la largeur de la couche atmosphérique traversée, ce qui explique le rougeoiement du ciel au coucher du Soleil. Dans le cas des éclipses de Lune ce sont les rayons passant à faible altitude qui traversent la plus grande largeur d'atmosphère, ce sont donc ces rayons qui ont un maximum de lumière bleue absorbée et qui sont donc les plus rouges. Comme ce sont aussi ces rayons qui sont les plus réfractés, le centre de l'ombre aura un aspect rougeâtre.

Le degré d'absorption dépend également des conditions météorologiques, donc la luminosité de la partie centrale de l'ombre est très sensible aux conditions météorologiques régnant dans les couches atmosphériques traversées.

L'intensité lumineuse au centre du cône dépend également de la distance à laquelle se trouve la Lune, et les éclipses totales proches du périgée sont toujours plus sombres que les éclipses totales proches de l'apogée.

eclipseluneatmosphere.jpg
Limite des rayons réfractés
Crédit : IMCCE/Patrick Rocher
Page précédentePage suivante