La mouvement de la Lune autour de la Terre |
Contrairement au mouvement de la Terre autour du Soleil, qui peut être considéré en première approximation comme keplerien (solution exacte du problème des deux corps), le mouvement de la Lune est beaucoup plus complexe. Une première approximation du mouvement de la Lune est donnée par la résolution d'un problème des trois corps (Soleil, Terre et Lune) appelé problème principal. Dans ce problème le mouvement de la Lune est obtenu en tenant compte de l'attraction du centre de masse de la Terre et des perturbations solaires dans le cadre de la mécanique newtonienne, le mouvement du barycentre Terre-Lune étant représenté par un mouvement keplerien.
La solution complète tient compte de très nombreuses perturbations et les éléments elliptiques se présentent sous la forme de séries semi-analytiques comportant plusieurs milliers de termes, environ 35000 pour la solution ELP2000 de Michèle Chapront-Touzé et Jean Chapront.
Les éléments elliptiques de l'orbite lunaire ne sont donc pas constants, mais varient rapidement avec le temps. Les valeurs du demi-grand axe, de l'excentricité et de l'inclinaison oscillent autour de valeurs moyennes ; la ligne des noeuds de l'orbite et la ligne des apsides sont animées de mouvements circulaires non uniformes.
En tenant compte de ces perturbations, la vitesse angulaire de la Lune peut progresser 29% plus vite à son périgée qu'à son apogée. La variation de distance entre le centre de la Terre et le centre de la Lune va de 56 à 63,8 rayons terrestres selon que la Lune est à son périgée ou à son apogée (la distance moyenne est de 60 rayons terrestres).